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pedunculatus, when it was growing with native 
grasses or within the acuminate foliage of Aciphylla 
aurea (golden spaniard). Foliar concentrations of 
only P and Mn were elevated in white clover (Trifo-
lium repens) foliage when it was growing in combina-
tion with grasses.
Conclusions  These findings point to mutual facili-
tation of nutrient uptake by combinations of species 
growing together. Some species that are less desirable 
from an agricultural perspective improve acquisition 
of soil nutrients by the plant community. Novel native 
species assemblages represent a potential opportunity 
to refine pasture management, facilitating optimal 
exploitation of nutrients. This could reduce fertiliser 
requirements and enhance and protect native biodi-
versity in pastoral grasslands.

Keywords  Mutualism · Biogeochemistry · Trace 
elements · Biodiversity · Pasture production

Introduction

Steep hill country at altitudes of about 400—1000 m 
accounts for 37% of New Zealand’s land area, with 
approximately half of this being pastoral farmland 
(Thom 2016; StatsNZ 2021). Future environmental 
and economic resilience of this landscape is consid-
ered to be critical, although this is a multi-faceted 
and complex management issue (Brower et al. 2020; 
Rissman et  al. 2021; Tozer et  al. 2021). Our thesis 
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Background  Experimental work using pot trials and 
mesocosm studies has indicated that species combi-
nations are more effective than single species mitigat-
ing the soil nutrient constraints that limit pasture pro-
ductivity in New Zealand’s hill country, but there is 
little field evidence to support this.
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ring plant species were sampled according to whether 
they were growing together in close proximity or in 
single species patches. Foliar concentrations of nutri-
ents were compared.
Results  Nutrient concentrations in a native 
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was growing in combination with native tussock 
grasses. Higher concentrations of eight nutrients 
were recorded in foliage of an exotic legume, Lotus 
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is that sustainable agricultural development requires 
more knowledge of nutrient dynamics in the con-
text of biodiversity in both pastoral and conservation 
grasslands.

Earlier forest clearance, historic overgrazing 
and associated soil erosion have provided scope for 
rebuilding hill country soils through improved pas-
ture management. This has already been occurring for 
several decades through better land management, pre-
vention of overgrazing and rabbit control (Parfitt et al. 
2014; Schipper et al 2017). Potentially this could be 
enhanced further through restoration of native vegeta-
tion and incorporation of native species into existing 
naturalised exotic pasture (Trotter et al 2005). Native 
plant species are likely to be better adapted to the 
natural environment, but they are low yielding and 
of much lesser forage value. For this reason, agri-
cultural management has focussed on conversion of 
native vegetation and replacement with more produc-
tive exotic species. However, pasture and stock pro-
duction in the hill country are constrained by low soil 
pH and fertility, particularly in terms of phosphorus, 
sulphur and trace elements that include molybdenum 
and boron (Hendrie et  al. 2021). These deficiencies 
restrict the successful establishment of clovers and 
other nitrogen (N) -fixing plants. Mt Grand Station, 
the location of the present study, provides a typical 
example of hill country conditions in these respects 
(Maxwell et al. 2010, 2016; Zhang et al. 2022a).

Top dressing with lime and fertilisers is largely 
impractical and too costly due to topography and 
the large area of land that will only support limited 
yields of herbage and stock in the prevailing climate 
and environment. During little more than 150  years 
since conversion of this landscape to sheep farming, 
oversowing with exotic species of grasses and leg-
umes has substantially improved productivity (Bork 
et  al. 2017). Hill country sheep and beef farming 
plays a highly important role in the nation’s economy 
(Scrimgeour 2016; StatsNZ 2021). Nevertheless, both 
establishment and sustainability of improved pasture 
with a suitable component of annual and perennial 
legumes remains a challenge; seasonal resilience is 
difficult to achieve and there is also encroachment by 
less desirable invasive and exotic species of grasses 
and shrubs.

A better understanding of the coexistence of native 
vegetation with introduced grasses and legumes in the 
hill country environment may be of benefit to both 

agriculture and conservation. We have previously 
reported the results of experimental work of plant 
uptake of nutrients from hill country soils to investi-
gate the compatibility of both exotic and native plants 
with contrasting root systems. Pot trials provided evi-
dence of functional compatibility of mixed-species 
rhizospheres that facilitate and improve the procure-
ment of limiting soil nutrients (Zhang et  al. 2022b). 
We identified the existence of a mutualistic relation-
ship between legumes and grasses that provided 
nutritional benefits not just to grasses, but also to leg-
umes (Zhang et al. 2022c). However, in that study, a 
native tussock grass had lower N when growing with 
the exotic legumes that may reflect a lack of adapta-
tion to coexistence. More recently published meso-
cosm studies used soil cores with component vegeta-
tion assemblages that were extracted from unfertilised 
grassland in the hill country, and then transferred to a 
controlled environment growth chamber (Zhang et al. 
2022a). Once again, species co-existence was benefi-
cial in terms of uptake of key soil nutrient; facilitation 
from grasses to clovers was evident.

The aim of the research reported in the present 
paper was to investigate whether the same type of 
facilitation between species could be demonstrated 
in situ in a hill country grassland (Fig. 1). This sam-
pling exercise was an attempt to validate earlier ex 
situ findings that legumes derive nutritional benefits 
from growing with grasses in terms of procurement 
of trace elements in limited supply in the hill country 
soils. Our hypothesis was simply that plants growing 
with companion species would have demonstrably 
different foliar concentrations of key nutrient ele-
ments compared to the same species growing alone.

Site and methods

This study was carried out at Mt Grand Station, a Lin-
coln University owned hill country pastoral farm situ-
ated in Hawea, Central Otago on South Island. The 
soils in the region have been created from the break-
down of schist, loess, and alluvial gravels (Molloy 
1998; Duncan et al. 1997). The high country soils are 
light and prone to erosion by wind and water, espe-
cially after the loss of vegetation. Soils on Mt Grand 
are acidic and of low fertility (Table  1). Soil phos-
phorus (P) is essential grass-clover pastoral farm-
ing systems; its supply and availability is possibly 
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the most significant constraint due to its promotion 
of the growth of clovers. Boron, Mo and nickel (Ni) 
were deficient in our analyses, although Sulphur (S) 
and a range of other micronutrients (cobalt, Co; cop-
per, Cu; iron, Fe; manganese, Mn; Mo; zinc, Zn) 
are frequently in short supply for pasture plants and 
grazing livestock in New Zealand grasslands (Crush 
et  al. 2018). The Mt Grand landscape provides a 
complex mosaic of microenvironments associated 
with altitude, aspect and vegetation cover (Duncan 
et  al. 2001). Mt Grand Station (1607  ha) is mainly 
steep hill country (from 400 – 1445 m asl.); 60% is 
above 1000 m in 8 blocks, with 94% of land consid-
ered suitable for grazing. Summer soil moisture defi-
cits constrain pasture production (annual rainfall is 
690–800 mm).

Methodology in this study simply involved sam-
pling and analysing foliage of a range of exotic and 
native legumes at different altitudes. Sampling loca-
tions were semi-randomly selected between altitudes 
of 700 – 1,000 m asl. in a walkover of the site on a 
single day by one individual (ZW) where species 
could be found both growing in close proximity and 

Fig. 1   Hill country grassland at Mt Grand Station in Hawea, 
South Island, New Zealand. Aciphylla aurea (Golden spaniard) 
in the centre foreground amongst Chionochloa rigida snow 

tussocks, Festuca novae-zelandiae tussocks within exotic pas-
ture grass vegetation in the middle distance, and more heavily 
grazed pasture in the background

Table 1   Soil concentrations of deficient soil nutrients 
recorded in the experimental soil, with typical ranges for 
agricultural soils in New Zealand (full details in Zhang et  al. 
2022a)

Analyses and units of measurement follow standard methodol-
ogy from a commercial laboratory and also Lincoln University 
Analytical Services*. Analyses by the commercial laboratory 
are routinely carried out on defined volume rather than mass 
of soil. Analytical methods were: Olsen extraction 1 followed 
by Molybdenum Blue colorimetry; HNO3 – HClO4 microwave 
digestion followed by ICP-OES determination 2; 1 M Neutral 
ammonium acetate extraction followed by ICP-OES determi-
nation 3; Mehlich 3 Extraction followed by ICP-OES 4

Significant deficiencies are emboldened

Determinant Unit of 
Measure-
ment

Recorded 
Concentra-
tion

Typical 
Range in NZ 
Soils

pH pH units 4.49–7.16 5.7—6.2
Olsen Phosphorus 1 mg L−1 6.3 20—30
Phosphorus2* mg kg−1 551 200—1,500
Potassium 3 mg kg−1 113 117—234
Boron 4 mg L−1 0.2 0.6—1.2
Molybdenum 2* mg kg−1 0.05 0.5—10.0
Nickel 2* mg kg−1 4.6 20—30
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also in single species patches 0.5 – 3.0 m apart. Our 
assumption was that both above- and below-ground 
interactions between species would be markedly less 
when they were growing further apart. Visually com-
parable environments and similar soil were important 
selection criteria, and the reason why paired com-
parisons were always recorded within 3  m of each 
other. Above-ground non-woody plant biomass was 
sampled of legumes growing either in single species 
patches or in combination with exotic pasture grasses, 
a native tussock grass or a native acuminate umbel-
lifer (Aciphylla aurea), all of which were widely 
established across the sampling site.

Vegetation across the sampling site varied with 
altitude and aspect, consisting of mixed communi-
ties of native tussock grassland species with over-
sown pasture grasses and legumes (Fig. 2), with scat-
tered assemblages of woody shrubs (mostly Discaria 
toumatou, Kunzea robusta and Coprosma propinqua) 
(see DOC 2006; Duncan et al. 2001). Some invasive 
weeds are also well established, notably Hieracium 
spp. in inter-tussock spaces at higher parts of the alti-
tude range, and an invasive shrub Rosa rubiginosa in 
some lower parts. Tall pasture grasses are prominent 
at lower altitudes of this range, particularly Anthoxan-
thum odoratum (sweet vernal grass), Agrostis capil-
laris (browntop) and Festuca rubra (red fescue), with 
a scattered dispersion of Trifolium (clovers) and Lotus 
spp. Samples of the three pasture grasses were amal-
gamated. Tussock grassland and the proportion of 
native species in plant communities tends to increase 
with altitude, with patches of tall acuminate rosettes 
of Aciphylla aurea (golden spaniard). Native tussock 

grasses included Chionochloa rigida (narrow-leaved 
snow tussock), Poa colensoi (blue tussock) and Fes-
tuca novae-zelandiae (hard tussock). A native broom 
(Carmichaelia petriei), one of a small number of 
threatened native species of broom found across the 
station and in the high country (nzpcn.org.nz; DOC 
2006; Mark 2012), was scattered mostly as individual 
plants across the sampling site. Carmichaelia spp. are 
commonly referred to as New Zealand brooms (Tan 
2014). Their role in soil development in chronose-
quences through a large build-up of soil N and facili-
tating forest species has been reported previously 
(Bellingham et al. 2001).

Carmichaelia and the four groups of companion 
grasses (pasture grasses and three species of native 
tussock grasses) were sampled. Two exotic legumes, 
Trifolium repens (white clover) and Lotus peduncu-
latus (bird’s-foot trefoil) and their companion native 
grass, Festuca novae-zelandiae (fescue tussock) and 
Chionochloa rigida amara (narrow-leaved snow tus-
sock), were collected. Lotus was also sampled that 
was growing with or adjacent to Aciphylla aurea. 
Five replicates were sampled for each legume, each 
by excising five leaves across the canopy. Five repli-
cates of each grass were sampled in the same way. All 
plant samples were collected at least 2  cm from the 
ground to avoid soil contamination of samples. All 
the plants were dried (48 h, 65 °C), finely ground in a 
mill, then microwave digested followed by elemental 
analysis using ICP-MS (7500cx, Agilent Technolo-
gies) using standard protocols. Total N was analysed 
using an Elementar Rapid Max N Elemental Ana-
lyser. Data that were not normally distributed were 

Altitude (m) 1093 900 1043 871

Carmichaelia petriei growing
with pasture grasses and Poa

colensoi

Carmichaelia petriei growing
with Chionochloa rigida and
Festuca novae-zelandiae

Lotus pedunculatus growing
with Acyphylla aurea and

Chinochloa rigida

Trifolium repens growing with
Festuca novae-zealandiae

Plant
Assemblages

Fig. 2   Sampling locations at Mt Grand Station
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log-transformed before analysis. Differences between 
means were determined using one-way ANOVA, with 
post-hoc Fisher LSD test. All analyses were con-
ducted using Minitab 19.

Results

The native broom (Carmichaelia petriei) had sig-
nificantly higher above-ground tissue concentrations 
of several elements when it was growing with com-
panion species of grasses. Higher foliar concentra-
tions of K, Ca, Mg and B were recorded when it was 
growing with pasture grasses and with P. collensoi at 

lower altitudes of the sampling range (Fig.  3A) and 
higher Mn, Zn and Ni when growing with F. novae-
zelandiae at higher altitudes of the sampling range 
(Fig.  3B). Conversely, the two larger native tussock 
grasses tended to have lower foliar concentrations of 
nutrients when growing together with broom (Fig. 4). 
This was much less evident in the pasture grasses and 
the small blue tussock, P. colensoi. Of all chemical 
elements, only K and Mn were elevated in grasses 
growing with broom.

Foliar concentrations of eight nutrients in Lotus 
foliage were higher when it was growing with either 
C. rigida or A. aurea, or with both (Fig. 5); Fe was 
the only element in lower concentrations. Snow 
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Fig. 3   Nutrient concentrations in green stems and foliage of 
broom (Carmichaelia petriei) and the four groups of grasses 
(pasture grasses, Poa colensoi, Chionochloa rigida and Fes-
tuca novae-zelandiae). Figure illustrates only elements when 

significate differences were recorded. Histogram bars are 
means ± standard deviations. Data were log transformed prior 
to analysis. Different letters separately indicate significant dif-
ferences (P < 0.05)
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tussock, C. rigida, foliage had significantly higher 
foliar concentrations of N, Zn, Cu and Mo when 
growing with Lotus (Fig. 6). In contrast, higher P and 

Mn concentrations in the foliage of Trifolium were in 
when it was growing with Festuca novae-zelandiae 
were the only significant differences recorded in 
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combinations of clover or grasses (Fig.  7). No data 
are available for foliar concentrations of nutrients in 
A. aurea.

Discussion

This study provides field validation that broadly sup-
ports the findings of earlier ex situ experimental work 
(Zhang et  al 2022a, 2022c), supporting our hypoth-
esis that plants growing with companion species 
would have demonstrably different foliar concentra-
tions of key nutrient elements compared to the same 
species growing alone. These findings provide field 
evidence of significant benefits of grasses to legume 
nutrition, by facilitating the procurement of key nutri-
ents. When growing with grasses, legume foliage fre-
quently had higher concentrations of P, K, S and Mn. 
Improved uptake of six other elements (Ca, Mg, S, 
Zn, B, Ni) was recorded in more than a single study 
(Table 2). When growing with legumes, higher foliar 
concentrations of K, but lower Ca, Fe and Mn were 
recorded in grasses.

There are natural differences in foliar trace element 
concentrations between different species of legumes. 
For example, in pot experiments in which the growth 
of twelve species of legumes (including nine species 
of Trifolium and Lotus pedunculatus) were grown in 
South Island high country soil, comparable to the site 
of the present study, Jordan (2011) found a wide range 
of shoot concentration of P (0.11 – 0.26%), Mo (0.23 
– 2.3 mg kg −1) and B (6.4 – 17.7 mg kg −1). Among 
the species, T repens and L. pedunculatus were near 

the upper part of the range for P, with concentration 
similar to those in the present study. Mo was much 
higher than the present study, but the soil had been 
limed in the earlier study which would have provided 
a supply of this element. Boron was at the lower part 
of the range in both these species. Foliar concentra-
tions of nutrients in legumes are also likely to dif-
fer within the same species, largely dependent on 
the type of soil and its fertility (Nguyen et al. 2020). 
Gounden et  al. (2018) collected several species of 
Trifolium from different localities, and recorded large 
differences in Fe, Ca, and Mn. The process of symbi-
otic N fixation (Liu et al. 2018), requires the interplay 
of several variables involving rhizobial communities 
(Tan et  al. 2015). These include the specificity and 
extent of rhizobial infection (Andrews and Andrews 
2017), root nodule development (Schwember et  al. 
2019) and other factors such as mycorrhizal associa-
tions (Sprent and James 2007), all interacting with 
multiple nutrient availability in soil and uptake by 
legumes and grasses (e.g. Becana et al. 2018).

Undoubtedly, at the site of the present study there 
would be significant spatial variability in a range of 
soil nutrients associated with soil development, alti-
tude, slope, aspect, erosion, vegetation cover and 
stock activity. However, this would be unlikely to 
explain differences in above-ground concentrations 
of nutrients recorded between legumes and grasses. 
Every species that was sampled when growing singly 
or in combination was within 3 m of each other. Fur-
thermore, all replicates for each species pair were col-
lected within a maximum land area of approximately 
100 m 2. The sampling procedure involved identifying 
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Table 2    Comparison of the results with two earlier studies. 
The increase (+ , dark shading), no significant change (light 
shading) or decrease (-, no shading) of foliar nutrient con-

centration in (A) legume spp. when growing with companion 
grasses, and (B) grass spp. when growing with companion leg-
umes.

(A) Legumes

Zhang et al, 2022c Zhang et al, 
2022a Present findings

Experiment 
type Pot experiment

Field 
sample
(Fer�le 

paddock)

Ex-situ Soil 
core Field sample

Species

Nutrients

Trifolium 
repens 

Lotus 
pedunculatus

Trifolium 
repens

Trifolium 
repens 

Trifolium 
repens 

Lotus 
pedunculatus

Carmichaelia 
petriei

Phosphorus + + - + + +
Potassium + + + + +
Calcium - + + +
Magnesium - + +
Sulphur + + +
Iron -
Manganese - - + + + +
Zinc + +
Copper - +
Boron - + +
Molybdenum - -
Nickel - + +

(B) Grasses

Zhang et al, 2022 c Zhang et al, 
2022 a Present findings

Experiment 
type Pot Soil core Field sample

Species

Nutrients

Lolium 
perenne

Dactylis 
glomerata

Festuca 
novae-

zelandiae

Na�ve 
grasses and 

Herbs

Pasture 
grasses

Poa 
colensoi

Chionochloa 
rigida 

Festuca 
novae-

zelandiae

Phosphorus - -
Potassium + - - - + -
Calcium - - -
Magnesium - -
Sulphur + -
Iron - - -
Manganese - - +
Zinc + -
Copper - + -
Boron - - -
Molybdenum - - -
Nickel + + - -
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locations containing each species combination, then 
immediately sampling adjacent patches where each spe-
cies was growing alone, providing direct comparisons 
between plants growing alone and with companion spe-
cies. It is unlikely the measured differences could be 
accounted for by spatial variability, although this proba-
bly explains the high variability of data about the means. 
Nutrients can be patchy (e.g. Emeterio et al., 2021) and 
soils are impacted by random historic occurrences that 
include organic input from animals. However, in the 
present study, the important characteristic they have in 
common is deficiencies of the same range of nutrients. 
The significance of the recorded differences between 
plants growing alone and with companion species is 
associated with the replicated paired comparisons.

Plant growth is influenced by multiple stressors; 
for example drought rather than soil nutrients would 
be the main limitation to plant growth during summer. 
Intraspecific competition in monospecific patches is 
likely to also play a significant role affecting nutrient 
uptake. Another consideration in this study is whether 
preferential grazing influenced the recorded differences 
between plants growing alone and those with com-
panion species. The high country farm is fenced into 
large grazing blocks, each typically 100 + ha in size; 
the blocks that were sampled are all extensively grazed 
by sheep but also visited by several wild mammalian 
pests including rabbits and deer. Studies of compensa-
tory growth in response to grazing (the compensatory 
continuum hypothesis) have provided some evidence 
that soil nutrient availability may affect  compensa-
tory growth by grazed plants (Wise and Abrahamson 
2005; Venter et al. 2021). In studies of rotational graz-
ing of fertile farmed grasslands, it is known that sus-
tained defoliation of vegetation beyond its capacity to 
regrow subsequently degrades productivity. In the pre-
sent study, preferential grazing of the legumes would 
undoubtedly deplete the available nutrient pool for the 
grasses, but the legume would then have more require-
ment for trace elements from the grasses. This cer-
tainly could be the start of the mechanistic explanation.

Native plants that fix N are largely lacking in New 
Zealand’s grassland flora; brooms are one of only 
a few exceptions, together with a small number of 
woody shrubs (e.g. Discaria toumatou, Rhamnaceae 
and Sophora spp., Fabaceae). The amount of N 
cycled was much less before vigorous N-fixing plants 
were introduced (Wardle 1991). In low fertility soils, 
it is well established that legume-grass assemblages 

are more productive than grassland without N-fixing 
plants (e.g. Berenji et  al. 2017). Legumes have a 
higher demand than grasses for P, S and other trace 
elements essential for N2 fixation (Caradus 1980; 
Yuvaraj et  al. 2020). However, many grass species 
have been shown to activate fixed phosphorus in 
the soil by releasing organic acid root exudates (Li 
et al. 2003, 2014). This obviously provides scope for 
neighbouring N-fixing plants and grasses to exchange 
mobilised soil nutrients. Unravelling the likely expla-
nations for changes in patterns of nutrient uptake was 
discussed in an earlier paper (Zhang et al. 2022c).

The present study showed benefits to Carmichaelia 
in terms of acquisition of a range of nutrients, corre-
sponding with declining concentration of several ele-
ments in companion grasses that support the hypoth-
esis of this study. The genus Carmichaelia contains 
about 30 species, all but one from New Zealand, 
although only a handful of species extend into the 
high country (Mark 2012). Rhizobial symbionts have 
been described for some species (Tan 2014; Tan et al. 
2013) and there is evidence from chronosequences 
that native brooms provide N benefits to coexisting 
plant species and in soil and ecosystem development 
in (Bellingham et  al. 2001; Lagerstrom et  al. 2011). 
There is, however, far more research on an exotic Cyt-
isus scoparius (Scotch broom), which is highly inva-
sive and widespread in New Zealand, including mon-
tane shrubland and tussock grasslands (Bellingham 
and Coomes 2003), and of which more is known of its 
effect on soil N (Drake 2011; Broadbent et al. 2017). 
Little attention has been given to modification of soil 
biogeochemistry by native species. Legumes including 
brooms provide better nutrition than grasses by stock, 
but they are also preferentially grazed, suggesting this 
a possible example of how a threatened endemic spe-
cies could provide a valuable component of pastoral 
grassland in the high country, even though grazing 
potentially threatens their resilience and conservation.

Lotus pedunculatus also received nutritional ben-
efits from companion grasses. A marked effect of 
higher foliar nutrient concentrations of eight nutrient 
elements including N by Lotus when growing with 
its two companion species was evident. This legume 
develops a dense superficial underground system of 
roots and rhizomes, although above-ground recovery 
from defoliation is slow and it thrives only under light 
grazing pressure (Espie 1987). Old rhizomes break-
down in winter and spring but later propagate new 
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discrete plants. This species thrives better than Tri-
folium repens on acid soils with low P (Stewart and 
Charlton 2006), but is generally considered to have a 
lesser effect than clovers on the growth of companion 
grasses (Nordmeyer and Davis 1977). The findings of 
the present study suggests that Lotus may provide a 
good example of a relationship between exotic leg-
ume and a native grass that is beneficial for grazing 
and stock production, and also to conservation of 
native species. Foliar concentrations of N and three 
key trace elements (Zn, Cu and Mo) were enhanced 
in snow tussocks at higher parts of the altitude range 
when growing together with Lotus.

The present study did not provide similar evidence 
to show that Trifolium repens benefited from associa-
tions with any of the grasses, apart from improved con-
centrations of P and Mn when growing with Festuca 
novae-zelandiae. Supply of P is critical to P fixation 
(Liu et  al. 2018). Manganese improves drought toler-
ance in legumes, being required for degradation of ure-
ide, an acyl derivative of urea, which otherwise inhibits 
N fixation (Purcell et al. 2000). F. novae-zelandiae was 
the most widespread native grass in lower altitudes of 
the sampling area and is typical of dry and windy loca-
tions in South Island. An early study found that Poa 
colensoi has VA mycorrhizal association, but the other 
two tussocks do not (Crush 1973). The relationship 
between different species of grasses requires further 
field investigation to support the finding of earlier pot 
experiments (Zhang et  al. 2022b, 2022c). In view of 
the long history of attempts to establish different spe-
cies of annual and perennial clovers in the New Zea-
land hill county, this requires more research.

In the two earlier ex situ studies (Zhang et  al. 
2022a, 2022c), elevated concentrations of nutrients 
in legumes often corresponded with lower concentra-
tions of the same nutrients in grasses but, in the pre-
sent study, there appeared to be less evidence this was 
the case. Without vegetation yield data from the sam-
pling locations it is not possible to estimate the total 
mass of each nutrient extracted from the soil. How-
ever, mass balance calculations in the earlier studies 
showed that combinations of species enhanced over-
all exploitation of nutrients from defined volumes of 
soil, providing evidence of transgressive overyield-
ing (Zhang et al. 2022a, 2022c). Undoubtedly, differ-
ences between studies can be attributed to differences 
between species in terms of requirements and rhizo-
sphere biogeochemistry. Further study is required of 

the most significant species combinations that poten-
tially could be managed to improve pasture produc-
tivity and to allow native species to be restored and 
sustained within this agricultural matrix.

Conclusion

The findings of the present work have shown that 
facilitation between species plays a role in nutrient 
procurement from soil in New Zealand’s hill coun-
try grasslands. This points to a requirement for more 
detailed studies into the combined influence of mixed 
plant species on multiple nutrient availability in soil, 
and for better mechanistic explanations. There are 
synergies between legumes, grasses and other co-
existing plant species that optimise acquisition of 
deficient chemical elements from soil. This extends to 
a range of nutrients in addition to N. Clearly, there is 
variability between species and species combinations, 
but we have provided evidence of improved uptake of 
P, K, S and Mn, also extending to six other elements.

Earlier reported work on facilitation of nutrient 
uptake between plant species has largely focussed on 
agricultural intercropping systems (e.g. Li et al. 2014) 
making similar linkage between P acquisition with 
phytosiderophores and Fe, Zn and Mn. Mechanistic 
explanations for facilitation are also well known in 
Western Australia flora (Lambers 2014). The present 
study provides similar insights into low fertility high 
country grasslands in New Zealand. These grass-
lands originated from oversown, invasive and natu-
ralised exotic species that have become established 
and maintained within large expanses of native veg-
etation, for the purpose of providing more productive 
fodder for stock. The novelty of the present findings 
is to introduce the concept of facilitation into these 
novel native ecosystems. These grasslands have high 
economic value for agriculture, but also exceptional 
conservation value as they contain the largest propor-
tion of the endemic species of New Zealand.

Novel native plant community assemblages in this 
agroecological mosaic represent a potential oppor-
tunity to refine pasture management by exploiting 
combinations of plant species that facilitate optimal 
exploitation of nutrients, with less reliance on ferti-
lisers. Furthermore, informing ecological knowledge 
of the role of nutrient acquisition in the origin and 
maintenance of biodiversity in grassland is an additional 
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outcome of this research. Incorporating more native 
species into this mid-altitude pastoral landscape would 
provide undoubted benefits to protection of biodiversity 
through land sharing. Generally, however, native plants 
have little resilience to or protection against ruminants, 
whether or not they are preferentially grazed. Prior to 
relatively recent human arrival in New Zealand, the 
endemic flora evolved and existed largely without fertile 
soils and in the absence of mammals. Native brooms pro-
vide one of only a small number of legumes that provide 
an obvious nutrition contribution to grazers through fix-
ing N. Otherwise, native species persist in contemporary 
pastoral grassland occasionally through their physical 
defences, as in golden spaniard, or though being a sec-
ondary choice for grazing, as in snow tussocks. None-
theless, grasses and other species that are less desirable 
from an agricultural perspective clearly play a facilitation 
role in nutrient procurement by species that are more 
desirable for agriculture or conservation. Combinations 
of plants enhance the acquisition of key soil nutrients. 
These findings justify more attention to enhancement 
rather than restriction of plant species diversity in the 
vegetation matrix of the New Zealand hill country.
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