
Abstract
Biosolids (sewage sludge) can be beneficially applied to degraded 
lands to improve soil quality. Plants grown on biosolids-amended 
soils have distinct concentrations of macronutrients and trace 
elements, which can be beneficial or present a risk to humans 
and ecosystems. Potentially, biosolids could be blended with 
other biowastes, such as sawdust, to reduce the risks posed by 
rebuilding soils using biosolids alone. We sought to determine 
the effect of mixing biosolids and sawdust on the macronutrient 
and trace element concentration of ryegrass over a 5-mo period. 
Lolium multiflorum was grown in a low fertility soil, typical for 
marginal farm areas, that was amended with biosolids (1250 kg 
N ha-1), biosolids + sawdust (0.5:1) and urea (200 kg N ha-1), as 
well as a control. Biosolids increased the growth of L. multiflorum 
from 2.93 to 4.14 t ha-1. This increase was offset by blending the 
biosolids with sawdust (3.00 t ha-1). Urea application increased 
growth to 4.93 t ha-1. The biowaste treatments increased N, P, Cu, 
Mn, and Zn relative to the control, which may be beneficial for 
grazing animals. Although biowaste application caused elevated 
Cd concentrations (0.15–0.24 mg kg-1) five- to eightfold higher 
than control and urea treatments, these were below levels that 
are likely to result in unacceptable concentrations in animal 
tissues. Mixing biosolids with sawdust reduced Cd uptake while 
still resulting in increased micronutrient concentrations (P, S, Mn, 
Zn, Cu) in plants. There were significant changes in the elemental 
uptake during the experiment, which was attributed to the 
decomposition of the sawdust.
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Biosolids are a product of municipal wastewater treat-
ment. They are primarily derived from domestic sources, 
which are combinations of human feces, urine and gray 

water, as well as small inputs from industry and occasionally 
stormwater (Lu et al., 2012). Biosolids are produced at an annual 
rate of 27 kg per person, and their disposal can be expensive (e.g., 
incineration or in landfills) or environmentally damaging via 
legal or illegal disposal into waterways (LeBlanc et al., 2009).

Biosolids provide nutrients and organic matter, which can 
improve soil structure (Antolín et al., 2005; Singh and Agrawal, 
2008), enhance plant growth (Miaomiao et al., 2009; Mok et al., 
2013), and increase soil microbial activity (Cytryn et al., 2011). 
The efficacy of biosolids in improving soil quality depends on 
their provenance and treatment. Biosolids application to soil 
can also cause negative effects because they can introduce patho-
gens (Vasseur et al., 1996; Zaleski et al., 2005) and contami-
nants, including heavy metals (Oliver et al., 1994; Miaomiao 
et al., 2009; Lomonte et al., 2010; Lopes et al., 2011) that may 
be hazardous to soil biological processes and to human health. 
Therefore, the rate of biosolids addition to land is regulated 
with respect to the levels of heavy metals, organic compounds 
and pathogens (EEC, 1986; USEPA, 1993; NZWWA, 2003). 
Excessive biosolids applications to land can result in excessive 
runoff or leaching of plant nutrients such as nitrate (NO3

-) and 
phosphate (PO4

3-) into receiving waters (Agopsowicz et al., 
2008; Knowles et al., 2011). Therefore, biosolids are more suit-
able for rebuilding eroded land, low-fertility with poor soil struc-
ture, such as marginal farm areas (Fresquez et al., 1990; Shahid 
and Al-Shankiti, 2013). Such sites are not directly linked to the 
human food chain, and the high organic matter contents of bio-
solids may be more effective than mineral fertilizers for restoring 
degraded soils.

Some of the negative effects of biosolids addition to soil, 
namely environmental impacts of heavy metals, can be mitigated 
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•	 The biowaste treatments increased N, P, Cu, Mn, and Zn.
•	 Mixing biosolids with sawdust reduced Cd uptake.
•	 Biowaste induced changes in elemental composition increased 
over the 5-month period.
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by blending the biosolids with other biowastes including biochar 
(Knowles et al., 2011), lignite (Simmler et al., 2013) and wood 
waste (Paramashivam et al., 2015). Bugbee (1999) reported that 
blending biosolids with sawdust could improve plant growth, 
while reducing NO3

- leaching by increasing the C/N ratio. In 
addition to reducing NO3

- leaching, wood waste, which can be 
expensive and environmentally damaging to dispose of, can effec-
tively sorb heavy metals such as Cd, Cr, Cu, Ni, Pb and Zn from 
industrial effluents (Ajmal et al., 1998; Marchetti et al., 2000; Yu 
et al., 2000). Bulut and Tez (2007) demonstrated that there was 
variation in the sorption of individual metals (Pb » Cd > Ni), 
which was attributed to the affinity of each element to the pro-
teins, carbohydrates, and phenolic compounds in the sawdust.

Sawdust undergoes decomposition when mixed with N-rich 
material. During decomposition, the cation exchange capacity 
of the sawdust increases, as more functional groups form on the 
surface of the sawdust particles ( Jokova et al., 1997). Therefore, 
it is likely that the sorption of metals by sawdust will increase, at 
least temporarily, as it decomposes. Sawdust may be beneficial 
in countries with forestry operations that produce large quanti-
ties of wood waste, which can be expensive and environmentally 
damaging to dispose of (Robinson et al., 2007).

Previous studies have shown that biosolids increases the 
growth of ryegrass (Crush et al., 2006; Santibanez et al., 2008). 
Biosolids also increase the uptake of Cd, Cu and Zn into the plant 
biomass (Ahumada et al., 2009; Bai et al., 2013; Mugica-Alvarez 
et al., 2015). Therefore, contaminants such as Cd may enter graz-
ing animals and result in concentrations in excess of food safety 
standards in animal products (Reiser et al., 2014). In contrast, 
the increase in Cu and Zn in the plant biomass can be beneficial 
to the health of grazing animals in areas where these elements are 
deficient, or where high Zn concentrations are needed such as a 
prophylaxis to facial eczema (Anderson et al., 2012).

We hypothesize that mixing sawdust with biosolids will 
reduce the solubility and hence the plant uptake of heavy metals 
from biosolids-amended soil. We aimed to determine whether 
mixtures of biowastes (biosolids + sawdust) could be used to 
rebuild a low-fertility soil without resulting in excessive metal 
concentrations in the aerial portions of ryegrass. Specifically, we 
sought to elucidate the effect of biosolids, either alone or mixed 
with sawdust, and urea on the growth and concentration of mac-
ronutrients and trace elements in L. multiflorum.

Materials and Methods
Experimental Setup

The experiment was conducted at Lincoln University green-
house facility (43°38¢42² S, 172°27¢41² E). Low-fertility soil, 
with now history of fertilizer addition, was collected from a 
marginal farm area near Bideford, New Zealand (40°45¢56² S, 
175°54¢42² E). The soil has been classified as an orthic brown 
soil, and has been chosen as a representative of marginal soils 
commonly found around farm systems. Biosolids and sawdust 
were collected from the Kaikoura Wastewater Treatment Plant, 
New Zealand (42°21¢37.40² S, 173°41¢27.35² E). Biosolids were 
homogenized thoroughly after sieving (≤10 mm). Tables 1 and 2 
show the properties of the soil, biosolids, and sawdust.

Twenty-four 10-L pots (25 cm diam., 29 cm height) were 
filled with 10 kg of soil to a soil bulk density of 1.3 g cm-3. Pots 
were incubated at ambient conditions in the greenhouse for 14 
wk before treatment application. Three treatments (urea, biosol-
ids, and biosolids + sawdust) and a control were setup randomly 
with six replicates each within the experimental setup. The treat-
ments comprised urea (2.11 g dry weight), biosolids (245 g dry 
weight), and the same amount of biosolids mixed with sawdust 
(123 g dry weight). The applications rates for urea and biosolids 
were equivalent to 200 and 1250 kg N ha-1, respectively, with the 

Table 1. Properties of soil, biosolids and sawdust used in the experiment. Values in parentheses represent standard error of n = 5 replicates.

Soil Sawdust Biosolids
pH 6.1 5.7 (0.1) 4.5 (0.0)
Moisture content, % w/w 25.5 230.4 (2.7) 106.2 (4.2)
Dry matter, % w/w 79.7 30.3 (0.2) 48.6 (1.0)
C/N ratio 14.3 908.4 (154.0) 10.6 (0.1)

Total available N, mg kg-1 43.1 n.d. (n.d.)† 403.8 (7.1)

CEC‡, cmolc kg-1 21.0 8.0 (0.2) 17.1 (0.6)
total base saturation, %BS 55.0 76.2 (0.8) 86.3 (3.0)
C, % w/w 6.5 47.7 (0.1) 27.1 (0.7)
N, % w/w 0.5 0.1 (0.0) 2.5 (0.6)
P, % w/w 0.05 (0.00) n.d. (n.d.) 0.59 (0.00)
K, % w/w 0.19 (0.00) 0.05 (0.00) 0.37 (0.00)
S, % w/w 0.04 (0.00) 0.01 (0.00) 0.87 (0.01)
Ca, % w/w 0.41 (0.01) 0.08 (0.00) 0.63 (0.01)
Mg, % w/w 0.20 (0.00) 0.02 (0.00) 0.30 (0.00)

B, mg kg-1 29.0 (0.3) 1.9 (0.2) 26.7 (0.1)

Cu, mg kg-1 4.2 (0.0) 0.8 (0.0) 891.0 (18.9)

Zn, mg kg-1 29 (0) 8 (0) 1073 (27)

Mn, mg kg-1 133.5 (2.9) 47.2 (0.8) 184.9 (4.5)

Fe, mg kg-1 15,461 (108) 116 (6) 14,534 (92)

Cd, mg kg-1 0.05 (0.00) n.d. (n.d.) 3.97 (0.07)

† n.d. = not detected.

‡ CEC = cation exchange capacity. 
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application rate of biosolids equivalent to 50 t ha-1 dry weight. 
The biosolids and biosolids + sawdust mixtures were applied to 
the surface of the pots before sowing. Urea (50 kg ha-1 equiva-
lent) was applied four times during the experimental period. Pots 
were arranged in a randomized block design.

In September 2013, 2 g of L. multiflorum (‘Feast II’ tetraploid 
Italian ryegrass) seeds were sown in all pots immediately after 
treatment application. An automated irrigation system applied 
a total of 1060 mm of water to each pot over the experimental 
period of 18 wk to ensure optimal plant growth at conditions 
near field capacity. The temperature in the greenhouse ranged 
from 9 to 20°C during the night (10 pm until 6 am) and from 
14°C to 28°C during the day. The plant biomass was repeatedly 
cut back to 2 cm above the soil to simulate grazing. Harvesting 
occurred fortnightly over the summer (southern-hemisphere) 
starting from 16 Oct. 2013 to 29 Jan. 2014.

Analyses and Statistical Evaluation
At the end of the experiment, soil and plant samples were 

dried at 70°C until constant weight was obtained, then ground 
using a Retch ZM200 grinder. Soil samples were collected and 
passed through a 5-mm stainless steel sieve prior to chemical 
analyses. Soil and plant C and N concentrations were measured 
using an Elementar Vario MAX CN analyzer. Soil pH was deter-
mined with pH meter (Mettler Toledo Seven Easy) 24 h after 
shaking 10 g of soil in 25 mL deionized water. Plant-available ele-
ments was estimated with a 0.05-M Ca(NO3)2 extraction follow-
ing Black et al. (2012), who reported that this extraction was the 
most effective procedure for determining the plant-availability 
of metals in biosolids-amended soil. In brief, 5 g soil was weighed 
into 50-mL centrifuge tubes and extracted with 30 mL of 0.05 M 
Ca(NO3)2 after 2 h of end-over-end shaking and centrifuging at 
3200 rpm for 15 min (Whatman 52 filter paper). Extracts were 
stored in sealed containers until chemical analyses.

Pseudo-total elemental analysis was performed using micro-
wave digestion in 8 mL of nitric acid (Aristar; ±69%), filtered 
through Whatman 52 filter paper, and diluted with filtered 
(MilliQ) water to a volume of 25 mL. Concentrations of B, 
Ca, Cd, Cu, Fe, K, Mg, Mn, P, S, and Zn were determined 
using inductively coupled plasma optical emission spectrom-
etry (ICP–OES Varian 720 ES). For quality assurance, refer-
ence soil and plant material from Wageningen University, the 

Netherlands (International Soil analytical Exchange 921 and 
International Plant analytical Exchange 100) was analyzed with 
the samples. Recoverable concentrations were 81–112% of the 
certified values.

Significant differences (a = 0.05) between control soil, urea, 
biosolids, and biosolids + sawdust treatments were determined 
by analysis of variance (Trillas et al., 2006), followed by Duncan 
post-hoc tests at p ≤ 0.05. The analyses were performed using 
SPSS v.22 (IBM, 2013). Correlation analyses between dry bio-
mass production and element concentrations were performed in 
Microsoft Excel 2013 (Microsoft Office, 2013).

Results
Figure 1 shows the cumulative pasture biomass production 

over the 18 wk experimental period. Control treatments showed 
a total average of 10.56 g biomass dry weight per pot, equivalent 
to 2.15 t ha-1. Urea fertilization increased the cumulative bio-
mass to 24.19 g, equivalent to 4.93 t ha-1. Biosolids application 
also resulted in a significant biomass response (20.32 g, equiva-
lent to 4.14 t ha-1), while mixing sawdust with biosolids lowered 
the biomass growth of L. multiflorum compared to biosolids 
alone (14.72 g, equivalent to 3.00 t ha-1). Six weeks after sowing, 
significant differences were detected in the growth response of L. 
multiflorum as a result of different treatments ranking in order of 
urea > biosolids > biosolids + sawdust > control, which remained 
unchanged throughout the duration of the experiment.

Table 3 shows that there were significant differences macro-
nutrient uptake between untreated control and the treatments. 
Biosolids addition significantly increased the concentrations of 
P and S, but surprisingly not N, relative to the control. Biosolids 
decreased plant K concentration. Biosolids + sawdust increased 
both N and P. Urea application only caused a significant increase 
in N and caused significant decreases in P, K and S.

Within treatments, there were significant differences in the 
uptake of K, P, and S over the experimental period (Fig. 2). 
Whereas K concentration in the plant biomass showed a decreas-
ing trend in all treatments (Fig. 2b), the highest concentrations 
of P and S were detected in plant biomass harvested 10 and 12 
wk after sowing, as well as at the end of the experiment (Fig. 2c 
and 2d). For the control, biosolids, and biosolids + sawdust treat-
ments, the N concentration varied between 2 and 3% through-
out the experimental period. Concentrations of N were between 
3 and 5% during the experiment in urea treatments, with distinct 
peaks in the initial harvest and at the 10-wk harvest, whereas 
N concentrations in control, biosolids and biosolids + sawdust 
treatments ranged between 2 and 3% (Fig. 2a). Plant P at indi-
vidual harvest time points was negatively correlated with the 
corresponding biomass in the biosolids and biosolids + sawdust 
treatments (r = −0.97, p ≤ 0.001; r = −0.89, p ≤ 0.01), as well as 
plant S (r = −0.88, p ≤ 0.01; r = −0.78, p ≤ 0.05, data not shown).

The application of biosolids and biosolids + sawdust increased 
the average plant Zn concentrations up to nine- and sixfold, 
respectively. Foliar Cu concentrations were increased by up to 
50% in the biosolids, and 70% in the biosolids + sawdust treat-
ments (Table 4). Average concentrations of Mn were increased 
by approximately 50% after biosolids application compared to 
control treatments. Plant Cd concentrations in the biosolids 
treatment were approximately eightfold higher than the control 

Table 2. Plant available [Ca(NO3)2] nutrient and trace element concen-
trations in biosolids and sawdust at start of the experiment. Values in 
parentheses represent standard error of n = 5 replicates.

Sawdust Biosolids
---------------------------------- mg kg–1 ----------------------------------

P 13 (1) 49 (1)
K 295 (6) 170 (5)
S 5 (2) 1193 (64)
Mg 185 (2) 349 (14)
B n.d. (n.d.)† n.d. (n.d.)
Cu 0.06 (0.02) 8.90 (0.32)
Zn 6.1 (1.0) 530.7 (12.0)
Mn 33.2 (1.3) 74.0 (2.9)
Fe 0.5 (0.1) 77.6 (1.7)
Cd 0.01 (0.00) 1.32 (0.02)

† n.d. = not detected.
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and urea treatments. This increase was only a fivefold increase 
in the biosolids + sawdust treatment. Urea application did not 
cause significant differences in average foliar concentration of 
any trace element.

As with the macronutrients, there was significant variation in 
the uptake of trace elements over the 18-wk experimental period 
(Fig. 3). In the biosolids and biosolids + sawdust treatments, 
the concentrations of Zn, Cd and Cu increased throughout the 
experimental period (Fig. 3b, 3c, and 3e). In contrast, there was 
little difference in the Cu concentration between biosolids and 
biosolids + sawdust treatments (Fig. 3e). For Cd and Zn, the dif-
ference between the biosolids and the biosolids + sawdust treat-
ment increased over time (Fig. 3b and 3c). Between the 6- and 
8-wk harvests, the results showed a pronounced increase in the 
elemental concentrations of Fe, Cd, Mn and Cu, especially in 
biosolids treatments.

Discussion
The total biomass production (2–5 t ha-1 equivalent) of L. 

multiflorum over 18 spring and summer weeks under biosolids 
and biosolids + sawdust treatments is comparable to the average 

biomass production of 2.2 and 8.7 t ha-1, depending on the 
growth period, reported for ‘Feast II’ (Hanson et al., 2006; Moir 
et al., 2013). Smith and Tibbett (2004) reported annual biomass 
production of 1.7, 2.0, and 2.4 t ha-1 in pastures receiving 4, 8, 
and 16 t ha-1 of dried biosolids, which is somewhat lower than 
our study equating to approximately 50 t ha-1 of dried biosolids. 
Biosolids and biosolids + sawdust hence were effective in increas-
ing plant growth on a low-fertility soil. The results indicate that 
mixing sawdust with biosolids significantly reduced the growth 
increase compared to biosolids alone and that neither biosolids 
nor biosolids + sawdust was as effective as urea in increasing bio-
mass. The lower biomass production of the biosolids + sawdust 
treatment compared to the biosolids-alone treatment is consis-
tent with sawdust immobilizing N. While the average N con-
centration in the biosolids + sawdust was not significantly lower 
than the biosolids-alone treatment (Table 3), the mass that was 
extracted (biomass × N concentration) was significantly higher 
for the biosolids alone treatment.

In the control treatment, the N concentration in our study 
was in a similar range of the value reported for annual ryegrass 
(L. multiflorum) in a study comparing different grass species 
under different rates of N loading (Moir et al., 2013). That the 
urea treatment (N) resulted in a greater increase in biomass than 
either of the biosolids treatments (N plus a suite of other plant 
nutrients) indicates that other components in the biosolids, such 
as heavy metals, reduced the effectiveness of the added N. In 
the biosolids and biosolids + sawdust treatments, only a limited 
amount of the total N applied with biosolids (1250 kg ha-1) was 
immediately plant available. Most of the N in biosolids is locked 
up in organic compounds which need to undergo (microbial) 
transformation processes to become available (Sommers, 1977).

With the exception of N, the concentrations of macronutri-
ents in our study were similar to those reported for perennial rye-
grass (Harrington et al., 2006). Even though urea significantly 
increased the biomass, the concentrations of other essential 

Fig. 1. Cumulative biomass (dry 
weight) in t ha−1 equivalent during 
the 18-wk experimental period. Each 
point is the average of six replicates 
with bars representing the standard 
error of the mean. Non-overlapping 
bars indicate significant differences 
(p ≤ 0.05).

Table 3. Average concentration of trace elements in L. multiflorum over 
the experimental period. Values in parentheses represent the stan-
dard error of the average concentration per pot (n = 6) throughout the 
experiment (n = 8). 

Control Urea Biosolids Biosolids + 
sawdust

------------------------------------------------------------------------------ %  w/w ------------------------------------------------------------------------------
N 2.39 (0.04) a† 3.35 (0.09) c 2.56 (0.05) ab 2.63 (0.12) b
P 0.30 (0.01) b 0.17 (0.00) a 0.43 (0.02) d 0.35 (0.02) c
K 3.21 (0.03) c 1.93 (0.02) a 2.73 (0.06) b 3.00 (0.12) c
S 0.38 (0.01) bc 0.26 (0.00) a 0.40 (0.01) c 0.35 (0.02) b
Ca 0.80 (0.01) c 0.77 (0.02) bc 0.73 (0.01) b 0.66 (0.02) a
Mg 0.23 (0.00) a 0.24 (0.01) bc 0.23 (0.00) b 0.21 (0.01) a

† Different lowercase letters indicate significant differences between 
treatments at p ≤ 0.05.
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macronutrients, namely P, S and K were significantly lower in 
the urea treatment, indicating that these elements were not limit-
ing in the control soil. These elements dropped to near-deficient 
concentrations (McNaught, 1970) in the urea treatment, pos-
sible due to a dilution-by-growth effect. The biosolids + sawdust 
treatment (Table 3) showed that the concentrations of K, P, and 
S were higher than the critical deficiency threshold concentra-
tions (28, 2.1, and 1.8 g kg-1, respectively) reported for perennial 
ryegrass (L. perenne) (McNaught, 1970; Smith et al., 1985). This 
is consistent with using biosolids and biosolids + sawdust not 
only to improve plant growth, but also to enhance plant nutrient 
uptake in a low fertility environment. The concentration of plant 
K decreased throughout the experimental period, which could 

Fig. 2. Average concentrations of macronutrients over the experimental period (n = 6). Error bars represent the standard error of the mean. Non-
overlapping error bars indicate significant difference between means (p ≤ 0.05).

Table 4. Average concentration of trace elements in L. multiflorum over 
the experimental period. Values in parentheses represent the stan-
dard error of the average concentration per pot (n = 6) throughout the 
experiment (n = 8). 

Control Urea Biosolids Biosolids + 
sawdust

---------------------------------------------------------------------- mg kg-1 dry wt. ----------------------------------------------------------------------
B 11.4 (1.0) b† 8.9 (0.3) a 10.5 (0.3) ab 9.9 (0.8) ab
Cu 5.9 (0.1) a 6.0 (0.2) a 10.3 (0.6) c 8.7 (0.4) b
Zn 21.6 (2.3) a 19.8 (0.7) a 150.4 (8.3) c 91.7 (3.7) b
Mn 37.4 (1.0) a 35.2 (0.8) a 60.2 (1.7) c 51.0 (2.4) b
Fe 96.0 (3.9) a 105.8 (13.6) a 118.7 (14.4) a 105.5 (7.1) a
Cd 0.03 (0.01) ab 0.02 (0.00) a 0.26 (0.06) c 0.13 (0.00) b

† Different lowercase letters indicate significant differences between 
treatments at p ≤ 0.05.
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be attributed to a limited supply of K from the initial soil, as well 
as biosolids and biosolids + sawdust treatments (Table 2).

Lolium multiflorum growing in the biosolids and biosolids 
+ sawdust treatments had significantly higher concentrations 
of Cd, Cu and Zn compared to control and urea treatments. 
Mixing sawdust with biosolids significantly decreased the Cd 
and Zn concentrations compared to the biosolids treatment. 
Clearly, this is beneficial in the case of Cd; sawdust addition 
can reduce the entry of this toxic element into fodder and food 
plants. In our study, Cd concentrations were within the range 
of acceptable daily intake of Cd concentration based on both 
food standards of New Zealand (≤1.25 mg kg-1 for kidney and 
≤2.5 mg kg-1 for liver) and the European Union (≤1.0 mg kg-1 
for kidney and ≤0.5 mg kg-1 for liver) (Reiser et al., 2014). The 

average Cd concentrations in our study (Table 3) were lower 
compared to others studies where biosolids had been used as a 
soil conditioner at similar rates (Antoniadis and Alloway, 2001; 
Black et al., 2012).

Some of the negative effects of elevated Cd may be offset by 
the elevated Zn concentrations (Oliver et al., 1994; Khoshgoftar 
et al., 2004; Reiser et al., 2014). Since Cd is absorbed by the root 
Zn transporter, a low supply of plant available Zn promotes Cd 
accumulation by plants (Khoshgoftar et al., 2004). Applying Zn 
fertilizer inhibits Cd uptake and translocation, especially in soils 
with low plant available Zn (Oliver et al., 1994). Khoshgoftar et 
al. (2004) reported that when Zn fertilizer was applied in a green-
house experiment, Zn concentration in wheat shoot increased 
from 26 to 56 mg kg-1, and Cd concentration was reduced from 

Fig. 3. Average (n = 6) concentrations of trace elements over the experimental period. Error bars represent the standard error of the mean. Non-
overlapping error bars indicate significant difference between means (p ≤ 0.05).
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0.90 to 0.09 mg kg-1. In our study, foliar Zn concentrations were 
similar to the 129 to 390 mg kg-1 range reported by Santibanez 
et al. (2008) and Torri and Lavado (2009), who used higher rates 
of biosolids addition (150–400 t ha-1) for perennial ryegrass. 
Biomass Zn concentrations in L. multiflorum in this study were 
higher than those reported for similar or lower rates of biosol-
ids addition in combination with L. perenne (Antoniadis and 
Alloway, 2001; Ahumada et al., 2009; Black et al., 2012), hence 
they could have offset Cd uptake into plant biomass. The high 
Zn concentrations in our study can be explained by the relatively 
high Zn content in the used biosolids, as well as the mildly to 
moderately acidic nature of the soil and biosolids respectively 
(Table 1). The Zn concentrations in L. multiflorum in the biosol-
ids treatment were within the range that Anderson et al. (2012) 
reported to cause a beneficial increase in blood Zn concentra-
tions in sheep.

Although Cd and Zn were significantly higher in biosolids 
compared to biosolids + sawdust, plant Cu concentrations in 
plant biomass increased after mixing biosolids with sawdust com-
pared to pure biosolids application. Copper deficiency is a wide-
spread problem in all agricultural systems (Sinclair and Edwards, 
2008; White and Broadley, 2009); thus increasing Cu uptake by 
plants by mixing biosolids with sawdust can provide agricultural 
benefits. However, the Cu concentration in our study were gen-
erally lower than those reported for L. perenne (Antoniadis and 
Alloway, 2001; Ahumada et al., 2009; Black et al., 2012). Urea 
application caused significant differences in uptake of B, Cu, 
and Zn, however, the differences were small and unlikely to be of 
agricultural significance.

During the experimental period, an accumulation of Zn, Cd 
and Cu was observed in L. multiflorum biomass. An increase of 
these elements at the end of the growing season may be related to 
decreased metabolic processes and smaller changes in the plant 
biomass, as suggested in studies investigating seasonal variations 
in trace metal uptake by Phragmites australis (Kastratović et al., 
2013; Eid and Shaltout, 2014). This is consistent with the results 
obtained from total biomass harvests (Fig. 1), which show only a 
small growth increase toward end of the experiment. In the bio-
solids + sawdust treatment, Cd and Zn concentrations increased 
at a lower rate compared to the biosolids treatments, indicat-
ing that sawdust reduced the mobility of these elements. It was 
likely that the sawdust started to decompose during the experi-
ment, resulting in increased metal sorption. Kostov et al. (1991) 
showed that the C/N ratio of Picea excelsa sawdust decreased 
from 251 to 62 only 6 mo after treatment with nutrient solu-
tion. Sawdust decomposition could explain the greater differ-
ence between the biosolids + sawdust treatment and biosolids 
treatments at the end of the experiment compared to the harvests 
before 6 wk, where difference were minimal.

The application of biosolids and biosolids mixed with sawdust 
improved the growth of L. multiflorum on a low-fertility soil, 
while the biowaste mixture (biosolids + sawdust) was less effec-
tive in restoring fertility compared to biosolids alone. Although 
less growth promoting, the advantage of using sawdust was seen 
in a reduction of the Cd uptake by the plants. There were signifi-
cant changes in the elemental composition of the pasture over 
time, with the differences between the biosolids and biosolids + 
sawdust treatments increasing over time to favorable agronomic 

levels. Our results indicate that a single harvest of pasture can be 
insufficient to determine the effect of a soil treatment on element 
uptake, since results highly vary with environmental conditions, 
plant growth, and metabolism. Future work could involve a field 
study to reveal the effect of sawdust decomposition on the long-
term fertility of soils amended with a mixture of biowastes.
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